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RESUMEN: Las inundaciones son uno 
de los desastres naturales más comu-
nes en el estado de Colima, causando 
significativas pérdidas económicas y 
afectando gravemente a la población 
local. La frecuencia y el impacto de 
las inundaciones subrayan la necesi-
dad de implementar estrategias efec-
tivas de gestión de riesgos y medidas 
de mitigación para minimizar sus 
efectos adversos en la comunidad.

Este artículo examina el uso de he-
rramientas digitales para la telede-
tección de inundaciones, integrando 
datos de los satélites Sentinel-1 (SAR) 
y CHIRPS (Climate Hazards Group In-
frared Precipitation with Stations) en el 
contexto del huracán Patricia de 2015. 
Se utilizó Google Earth Engine para 
procesar las imágenes satelitales, 
aplicar algoritmos de inteligencia arti-
ficial y validar los resultados mediante 
observaciones in situ. 

Los resultados revelan una correla-
ción significativa entre las áreas inun-
dadas detectadas por el satélite Sen-
tinel-1 y los patrones de precipitación 
extrema registrados por CHIRPS. La 
integración de datos satelitales y de 
precipitación proporciona una visión 
más completa y precisa de las diná-
micas de inundación, lo que es cru-
cial para desarrollar estrategias de 
mitigación y respuesta ante desastres 
naturales. Este enfoque permite a los 
responsables de la gestión de riesgos 
tomar decisiones informadas y proac-
tivas para proteger a las comunida-
des vulnerables.

PALABRAS CLAVE: CHIRPS, Google 
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ABSTRACT: Floods are one of Colima’s most common natural disas-
ters, causing significant economic losses and severely impacting the 
local population.The frequency and impact of flooding underscore 
the need to implement effective risk management strategies and miti-
gation measures to minimize their adverse effects on the community.
This article examines digital tools for flood remote sensing, integra-
ting data from the Sentinel-1 (SAR) and Climate Hazards Group In-
frared Precipitation with Stations (CHIRPS) satellites in the context of 
Hurricane Patricia in 2015. Google Earth Engine processed the sate-
llite images, applied artificial intelligence algorithms, and validated 
the results through in-situ observations.

The results reveal a significant correlation between flooded areas de-
tected by the Sentinel-1 satellite and extreme precipitation patterns 
recorded by CHIRPS. Integrating satellite and precipitation data pro-
vides a more complete and accurate view of flood dynamics, crucial 
for developing mitigation and response strategies for natural disas-
ters. This approach enables risk managers to make informed and 
proactive decisions to protect vulnerable communities.

KEYWORDS: Floods, remote sensing, Sentinel-1, CHIRPS, Hurricane 
Patricia, Google Earth Engine.

INTRODUCCIÓN
Las inundaciones representan una de las amenazas naturales más re-
currentes y costosas a nivel mundial, afectando múltiples dimensiones 
del bienestar humano como la salud, la seguridad alimentaria, la econo-
mía y la infraestructura [1] [2]. Estos eventos naturales no solo resultan 
en la pérdida de vidas humanas, sino que también provocan daños ex-
tensos a la infraestructura, generan consecuencias económicas devas-
tadoras y tienen efectos a largo plazo que frecuentemente derivan en 
repercusiones sociales adversas [3]. La magnitud de estos impactos 
subraya la necesidad urgente de desarrollar estrategias efectivas de 
gestión de riesgos y medidas de mitigación para minimizar sus efectos 
negativos en las comunidades afectadas.
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Las inundaciones repentinas son particularmente pe-
ligrosas debido a su naturaleza impredecible y la rapi-
dez con la que pueden desarrollarse. Estas inundaciones 
suelen ocurrir sin previo aviso y pueden ser provocadas 
por tormentas eléctricas estacionarias, tormentas que 
afectan repetidamente la misma área, o precipitaciones 
intensas asociadas con huracanes y tormentas tropica-
les [4]. La falta de tiempo para prepararse ante estos 
eventos aumenta el riesgo para las comunidades afec-
tadas, subrayando la necesidad de sistemas de alerta 
temprana y estrategias de respuesta rápida para mitigar 
sus impactos.

Numerosas investigaciones han examinado los efectos 
y la evaluación de los daños causados por fenómenos 
hidrometeorológicos extremos, así como por eventos 
de origen humano y natural [6-9]. Un informe de 2022 
destacó que los ciclones tropicales fueron responsables 
del 51% de las afectaciones por desastres naturales en 
México, seguidos por las lluvias e inundaciones, que re-
presentaron el 26%, y los sismos, con un 11% [10]. Estos 
datos subrayan la importancia de desarrollar estrategias 
de mitigación y respuesta ante desastres, especialmen-
te en regiones vulnerables a estos fenómenos.

Estos eventos han aumentado significativamente la vul-
nerabilidad de las poblaciones afectadas, especialmente 
en regiones como Colima. En 2015, el huracán Patricia 
provocó precipitaciones extremas que superaron los 
400 mm en un período de 72 horas, resultando en inun-
daciones catastróficas [8]. La magnitud de estas lluvias 
y sus consecuencias subrayan la necesidad urgente 
de implementar medidas de mitigación y estrategias 
de gestión de riesgos para proteger a las comunidades 
vulnerables y minimizar los impactos de futuros eventos 
similares.

En este contexto, la teledetección mediante imágenes 
satelitales se ha consolidado como una estrategia esen-
cial para la vigilancia y predicción de eventos hidrome-
teorológicos extremos.

La integración de plataformas digitales como Google 
Earth Engine, junto con los datos de los satélites Senti-
nel-1 (SAR) y productos de precipitación como CHIRPS, 
ha optimizado la capacidad de respuesta ante emergen-
cias y fortalecido las estrategias de mitigación de ries-
gos [11–14]. 

Este enfoque permite a los responsables de la gestión 
del riesgo anticipar y reaccionar de manera más efec-
tiva, minimizando los impactos negativos en comunida-
des vulnerables y mejorando la planificación de medidas 
preventivas.

En los últimos años, los avances en inteligencia artificial 
(IA) y aprendizaje profundo (deep learning) han ampliado 
significativamente las posibilidades de análisis dentro de 
la teledetección.

El uso de modelos como las redes neuronales convo-
lucionales (CNN) y arquitecturas derivadas como U-Net 
permite identificar y segmentar automáticamente las 
áreas afectadas por inundaciones, extrayendo patrones 
espaciales complejos de datos radar (Sentinel-1) y de 
precipitación (CHIRPS) [29] [30].
 
Estos enfoques superan las limitaciones de los métodos 
tradicionales de umbralización o clasificación supervi-
sada, ofreciendo resultados más precisos y confiables 
incluso bajo condiciones de nubosidad o baja visibilidad.

De esta forma, la combinación de teledetección satelital 
e inteligencia artificial mejora la detección oportuna de 
áreas inundadas, reduce los tiempos de procesamiento 
y refuerza la capacidad predictiva de plataformas en la 
nube como Google Earth Engine [18].

En este estudio se aborda el análisis de las inundaciones 
generadas por el huracán Patricia en Colima, integrando 
tres componentes principales:

1. Detección de áreas inundadas mediante imágenes 
SAR de Sentinel-1.
2. Validación con datos de precipitación del producto 
CHIRPS.
3. Evaluación de la efectividad de estas herramientas 
para la gestión de riesgos hídricos.

La metodología propuesta no solo contribuye a com-
prender eventos pasados, sino que también establece 
un marco de referencia para el desarrollo de sistemas 
de alerta temprana más robustos en zonas tropicales 
propensas a inundaciones repentinas [5,17].

MATERIAL Y MÉTODOS
Herramientas digitales para la detección de inundaciones 
mediante imágenes satelitales. El uso de herramientas 
digitales para la teledetección de inundaciones ha ex-
perimentado una evolución notable en los últimos años, 
mejorando significativamente la capacidad para analizar 
grandes volúmenes de datos satelitales. Estas tecnolo-
gías avanzadas permiten la generación de mapas preci-
sos que identifican las áreas afectadas por inundaciones, 
facilitando una respuesta más efectiva ante desastres 
naturales. A continuación, se destacan algunas de las he-
rramientas más relevantes que han sido fundamentales 
para este propósito, proporcionando a los responsables 
de la gestión de riesgos la información necesaria para 
tomar decisiones informadas y proactivas.

Satélites Sentinel-1
Los satélites Sentinel proporcionan imágenes de alta re-
solución que son fundamentales para el monitoreo de 
inundaciones.

Sentinel-1: Radar de apertura sintética (SAR), puede ob-
servar la superficie terrestre bajo cualquier condición 
climática (día/noche, nubes).[11].
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de alta resolución como PlanetScope son comerciales, lo 
cual limita su acceso en investigaciones públicas.
Validación limitada de resultados

Validación limitada de resultados 
La ausencia de datasets validados por instituciones guber-
namentales, como mapas de zonas de riesgo actualizados, 
limita la capacidad de evaluar el rendimiento de los mode-
los de detección [1]. Esto impacta especialmente en áreas 
sin infraestructura de monitoreo hidrológico permanente.

Limitaciones de los modelos de aprendizaje automático
Modelos como Random Forest (RF) presentan dificul-
tades para manejar datos secuenciales y condiciones 
climáticas variables [23]. Asimismo, redes neuronales 
como LSTM son susceptibles al sobreajuste (overfitting) 
si no se emplean técnicas como regularización, valida-
ción cruzada o dropout [18]. Aunque el sobreajuste es un 
riesgo común en IA, puede mitigarse mediante diseño 
cuidadoso del modelo.

Requisitos de infraestructura y personal capacitado
Procesar imágenes SAR con SNAP o plataformas similares 
requiere hardware especializado y conocimientos técnicos 
en programación geoespacial [17]. Esto representa un obs-
táculo para muchas instituciones públicas locales que ca-
recen de recursos o personal formado en estos aspectos.

Oportunidades
Modelos híbridos y de transferencia
El desarrollo de enfoques como RF + LSTM permite 
combinar interpretabilidad y capacidad predictiva se-
cuencial, optimizando el análisis de inundaciones [23-
25]. Además, el transfer learning ha demostrado ser útil 
para adaptar modelos a regiones con baja disponibilidad 
de datos históricos [18].

Procesamiento en la nube y democratización tecnoló-
gica
Plataformas como Google Earth Engine [26] eliminan la 
necesidad de computadoras locales de alto rendimiento, 
permitiendo a investigadores y gobiernos acceder a datos 
satelitales y herramientas analíticas desde cualquier nave-
gador web.

METODOLOGÍA
Diseño metodológico general
La metodología se centra en el análisis satelital multi-
fuente mediante la técnica de detección activa (radar), 
integrada en una plataforma de procesamiento en la 
nube.

Se utilizaron datos de los satélites Sentinel-1 (SAR) y 
CHIRPS (precipitación), procesados mediante Google 
Earth Engine (GEE). El objetivo fue cuantificar áreas afec-
tadas por inundación y correlacionarlas con eventos de 
precipitación extrema. Además, se revisaron estudios 
previos y se contrastaron los resultados con datos se-
cundarios para validar la estrategia metodológica.

Este estudio se centró exclusivamente en imágenes SAR 
proporcionadas por Sentinel-1, dada su capacidad para 
detectar cuerpos de agua bajo condiciones climáticas 
adversas como nubosidad o lluvia intensa.

Inteligencia artificial y aprendizaje automático
La implementación de técnicas de inteligencia artificial 
ha revolucionado la detección de inundaciones. Mode-
los de aprendizaje profundo como las Redes U-Net han 
demostrado ser altamente eficaces en la segmentación 
automática de zonas afectadas por inundaciones [12].

Además, aunque los algoritmos de inteligencia artificial 
pueden procesar imágenes rápidamente, la detección 
de cuerpos de agua no ocurre en tiempo real. Los sa-
télites como Sentinel-1 tienen revisita cada 6 a 12 días, y 
sus datos requieren procesamiento posterior. [11]. La inte-
gración de datos satelitales con información proveniente 
de estaciones hidrometeorológicas locales contribuye a 
desarrollar modelos predictivos más robustos [17].

CHIRPS: Datos Híbridos de Precipitación
CHIRPS es un producto de precipitación cuasi-global 
desarrollado por el Climate Hazards Center de la Uni-
versidad de California Santa Barbara en colaboración 
con la NASA. Combina múltiples fuentes de datos para 
proporcionar estimaciones de precipitación confiables, 
especialmente en regiones con escasas estaciones me-
teorológicas [18].

Características técnicas:
• Resolución espacial: 0.05° (~5.5 km) desde 1981 hasta 
presente
• Cobertura temporal: Datos diarios, pentadales y men-
suales
• Fuentes de datos:
- Imágenes satelitales infrarrojas (GOES, Meteosat)
- Mediciones in situ de estaciones meteorológicas globa-
les (GHCN, GSOD)
- Reanálisis climáticos (NOAA-CPC)

Desafíos y Oportunidades
El desarrollo e implementación de herramientas digitales 
para la detección de inundaciones presentan diversos 
desafíos y oportunidades. Es fundamental evaluar estos 
factores para garantizar la efectividad de las soluciones 
tecnológicas en la gestión de riesgos hídricos.

Desafíos
Limitaciones de resolución temporal y espacial
Aunque Sentinel-1 (SAR) opera bajo cualquier condición 
atmosférica, su frecuencia de revisita (6 a 12 días) puede 
no ser suficiente para monitoreo en tiempo cuasi-real [18].

Acceso y calidad de datos
En regiones con escasa cobertura de estaciones meteo-
rológicas, como zonas rurales de Colima, validar datos 
satelitales puede ser complicado [21]. Además, aunque 
hay productos abiertos como Sentinel o CHIRPS, otros 
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Los resultados se exportaron para su análisis posterior 
en QGIS (sistema de información geográfica de código 
abierto) y en Python para generar gráficas de precipita-
ción diaria y acumulada.

Validación cruzada y comparación con estudios previos
Para validar los resultados, se compararon las áreas 
identificadas como inundadas con reportes del CENA-
PRED sobre los impactos del huracán Patricia en Colima. 
Además, se contrastaron los mapas generados con re-
gistros históricos de precipitación e imágenes publicadas 
en literatura académica sobre eventos similares [6][8].

Si bien no se contó con validación in situ, la correlación 
entre zonas con alta precipitación (≥106 mm) y las áreas 
clasificadas como inundadas en radar respalda la confia-
bilidad metodológica.

RESULTADOS
Google Earth Engine con Sentinel-1
En la Figura 1 se muestra el primer flujo para el tratamien-
to de imágenes Sentinel-1 (SAR) y Sentinel-2 (óptico), 
destacando que para este estudio solamente usamos 
Sentinel-1 desde su carga en Google Earth Engine (GEE), 
hasta la fusión de resultados para crear mapas de inun-
dación en QGIS.

Área de estudio y periodo de análisis
El área de estudio corresponde al estado de Colima, 
una región tropical ubicada en el occidente de Mé-
xico con alta exposición a fenómenos hidrometeoro-
lógicos. Se delimitó espacialmente utilizando una co-
lección administrativa (FeatureCollection) filtrada por 
entidad federativa. El periodo de análisis se concentró 
entre el 1 y el 31 de octubre de 2015, periodo en que 
impactó el huracán Patricia.

 Procesamiento de datos satelitales
•  Sentinel-1 (Radar SAR)
Se utilizaron productos Sentinel-1 GRD (Ground Ran-
ge Detected) en modo IW (Interferometric Wide Swa-
th), con polarización VV (vertical-vertical), adecuados 
para el análisis de cuerpos de agua bajo condiciones 
climáticas adversas. El procesamiento se realizó en 
GEE, con las siguientes etapas:
• Preprocesamiento: aplicación de filtro speckle para 
reducción de ruido, calibración radiométrica a decibe-
lios y corrección geométrica usando el modelo digital 
de elevación SRTM.
• Análisis de cambio: se calcularon imágenes de di-
ferencia entre el periodo pre-evento (1–15 oct) y 
post-evento (24 oct–7 nov). Se aplicó una umbrali-
zación de 1.5 dB para identificar áreas con cambios 
abruptos, clasificando los píxeles como agua/no agua. 
El umbral de 1.5 dB se adoptó con base en valores re-
portados en estudios, donde diferencias superiores a 
este rango se asocian con cambios súbitos de retro-
dispersión relacionados con inundación [27][28].
• Cálculo de área: mediante álgebra de píxeles, se es-
timó la superficie inundada en km2. El resultado se ex-
portó en formato GeoTIFF para análisis complemen-
tario en QGIS.

CHIRPS (precipitación)
Los datos diarios de precipitación se obtuvieron del 
producto UCSB-CHG/CHIRPS/DAILY (resolución es-
pacial 0.05°, ~5.5 km). Se filtró el periodo del 20 al 
25 de octubre de 2015 y se calcularon acumulados y 
máximos diarios.

Posteriormente, se generaron mapas de isolíneas y se 
superpusieron con las capas de inundación derivadas 
de Sentinel-1 para evaluar coincidencias espaciales 
y temporales. Este cruce permitió relacionar directa-
mente eventos extremos de precipitación con las zo-
nas afectadas por inundaciones.

Procesamiento computacional y herramientas utiliza-
das
El procesamiento se realizó casi en su totalidad me-
diante Google Earth Engine, aprovechando su capaci-
dad de cálculo en la nube y la disponibilidad de datos 
satelitales de libre acceso [26]. La herramienta SNAP 
de la ESA se utilizó como referencia para validación 
de parámetros en imágenes Sentinel-1, aunque no fue 
implementada directamente en este estudio.

Figura 1. Diagrama de flujo para imágenes Sentinel-1 y Sen-
tinel-2.
Fuente: Elaboración propia.

A continuación, se presenta una explicación paso a paso 
del código de Google Earth Engine diseñado para calcular 
las áreas inundadas en Colima, México, a partir de imá-
genes de satélite de Sentinel-1 tras el paso del huracán 
Patricia en 2015.

Primero se define la región de interés usando un conjun-
to de características (Feature Collection) que representa 
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Por último, se exporta la imagen recortada a formato Geo-
TIFF para poderlo procesar con otro programa gestiona-
dor de mapas como Qgis, en la Figura 8 se puede obser-
var el código.

Después se procede a hacer una carga de colección de 
imágenes de radar de la misión Sentinel-1. Se filtra por ubi-
cación (dentro de Colima), fechas (del 1 al 15 de octubre 
de 2015), modo de instrumento (IW) y polarización (VV), 
como se puede observar en la Figura 3.

Figura 3. Carga de imágenes Sentinel-1 antes y después del 
evento.
Fuente: Elaboración propia.

Figura 7. Cálculo del área total inundad en km2.  
Fuente: Elaboración propia. 

Figura 8. Exportar la imagen como GeoTIFF.
Fuente: Elaboración propia. 

Figura 9. Áreas inundadas en Colima . 
Fuente: Elaboración propia.

Figura 4. Verificación de bandas disponibles.
Fuente: Elaboración propia.

Figura 5. Cálculo de la diferencia entre imágenes.
Fuente: Elaboración propia.

Figura 6. Recorte de la imagen al estado de colima.
Fuente: Elaboración propia.

El siguiente paso es verificar si existen hay bandas dispo-
nibles en las colecciones de imágenes antes y después 
del evento. Si no hay bandas, se asigna una imagen con 
valor cero, Figura 4.

Después de ello se calcula la diferencia entre las imáge-
nes post y pre-evento. Se usa un umbral (1.5) para identifi-
car áreas que han cambiado significativamente (indicando 
inundación), como se puede observar en la Figura 5.

Después de realizar el cálculo, ahora se procede a cen-
trar el mapa en la región de Colima y se añaden las áreas 
inundadas al mapa, utilizando una paleta de color rojo para 
visualizarlas, como se puede observar en la Figura 6.

 La Figura 9 muestra el resultado final de las áreas inun-
dadas por el huracán Patricia en 2015. Este código utiliza 
imágenes de radar de Sentinel-1 para calcular y visualizar 
las áreas inundadas en Colima tras el huracán Patricia, lo 
que permite a los investigadores y a los responsables de 
la toma de decisiones evaluar el impacto de desastres 
naturales y planificar respuestas adecuadas.

Las áreas marcadas en azul corresponden a los pixeles 
inundados en los alrededores del estado de Colima y las 
imágenes de color rojo son del estado de Colima.

Figura 2. Definición del área de interés
Fuente: Elaboración propia.

divisiones administrativas. En este caso, se filtra para se-
leccionar el estado de Colima, como se puede observar 
en la Figura 2.

para obtener el área total inundada. Luego, se suma el 
área en la región de Colima. Después se obtiene el valor 
del área inundada en metros cuadrados y se convierte a 
kilómetros cuadrados. Se maneja la posibilidad de que no 
haya datos (asignando cero si es necesario), Figura 7.

Ahora se procede a multiplicar la imagen de diferencia 
(donde se indica inundación) por el área de cada píxel 
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El análisis con imágenes Sentinel-1 en Google Earth Engi-
ne reveló:
1. Áreas inundadas detectadas:
•	 Se identificaron 142 km2 de superficie inundada en 

Colima tras el huracán Patricia (octubre 2015).
2. Metodología clave:
•	 Comparación de imágenes SAR pre-evento (1-15 oct) 

y post-evento (24 oct-7 nov).
•	 Umbral de detección: 1.5 dB en diferencia de retrodis-

persión VV.
•	 Resolución espacial: 30 metros (precisión para ma-

peo municipal).
3. Productos generados:
•	 Mapa GeoTIFF de áreas inundadas (descargable para 

QGIS/ArcGIS).
•	 Cuantificación exacta del área afectada en km2.
4. Validación:
•	 Los resultados coincidieron con:
- Reportes oficiales de CENAPRED [8]
- Datos de precipitación extrema de CHIRPS (105.97 mm/
día)

Datos CHIRPS con Google Earth Engine y Python
A continuación, se presenta una explicación paso a paso 
del código de Google Earth Engine para descarga de da-
tos de CHIRPS tras el paso del huracán Patricia en 2015, 
para después analizarlos con Python.

Primero se define la región de interés usando un conjun-
to de características (Feature Collection) que representa 
divisiones administrativas. En este caso, se filtra para se-
leccionar el estado de Colima, como se puede observar 
en la Figura 10. 

• Coordenadas:
- Esquina suroeste: -104.58° Lon, 18.96° Lat
- Esquina noreste: -103.60° Lon, 19.45° Lat
Nota: Este filtro espacial es clave para optimizar el proce-
samiento.

Por último, se procede a realizar un centrado de los da-
tos para el estado de Colima y después a descargar los 
datos en formato CSV para analizarlos con Python, en la 
Figura 12, se puede observar el código implementado. 

Figura 10. Definición del área de interés.
Fuente: Elaboración propia. 

Figura 12. Descarga de datos CHIRPS. 
Fuente: Elaboración propia. 

Figura 13. Mapa de precipitación CHIRPS de México.
Fuente: Elaboración propia. 

Figura 14. Diagrama de flujo para el procesamiento CHIRPS .
Fuente: Elaboración propia .

Figura 11. Carga de los datos CHIRPS.
Fuente: Elaboración propia. 

En la Figura 13 se ve una visualización de México con la 
precipitación de CHIRPS, con la fecha del mes de octubre 
del 2015, el color rojo es cuando existe mayor precipita-
ción. 

Análisis de los datos descargados con Python
En la Figura 14 se muestra el diagrama de flujo para el 
análisis de datos CHIRPS: filtrado espaciotemporal, cál-
culo de acumulados de lluvia y exportación a CSV para 
generar gráficas temporales en Python.

Después se procede a hacer una carga de colección de 
imágenes de UCSB-CHG/CHIRPS/DAILY (datos diarios 
de precipitación), para la carga de datos se filtró por la 
fecha del mes en el cual llego el Huracán Patricia, como 
se observa en la Figura 11.
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Este código Python procesa y visualiza datos de precipi-
tación del producto CHIRPS para analizar el impacto del 
huracán Patricia en octubre de 2015. A continuación, se 
explica algunos componentes claves en el código:

Carga y preparación de datos
En la Figura 15, se observa el código implementado para la 
carga de los datos de CHIRPS previamente descargados 
con Google Earth Engine. 

Figura 15. Carga de datos CHIRPS en Python.
Fuente: Elaboración propia. 

Figura 16. Filtrado por fecha. 
Fuente: Elaboración propia. 

Figura 18. Precipitación generada en el mes de octubre 2015. 
Fuente: Elaboración propia. 

Figura 17. Generación de gráfica.
Fuente: Elaboración propia. 

Filtrado del evento.
Después se procede a realizar un filtrado de los datos 
para obtener la precipitación de la fecha de llegada del 
huracán patricia, como se puede observar en la figura16. 

Finalmente, procesamos los datos obtenidos para gene-
rar una gráfica de la precipitación registrada en octubre 
de 2015. Esto nos permitirá comparar si existe alguna ten-
dencia relacionada con la fecha de llegada del huracán 
Patricia, como se puede observar en la Figura 17.

A continuación, se muestra la gráfica generada de Python.  
La Figura 18 muestra la precipitación diaria en Colima du-
rante octubre de 2015, destacando el impacto del hura-
cán Patricia los días 23-24 de octubre.

Las barras azules representan la lluvia normal, mientras 
que las rojas marcan el evento extremo, donde se regis-
tró un pico de 106 mm en un solo día, superando por más 
del doble el umbral de lluvia extrema (línea naranja en 50 
mm). Este incremento abrupto evidencia la intensidad del 
huracán, contrastando con los valores moderados previos 
y posteriores al evento.

CONCLUSIONES
El estudio integrado de datos Sentinel-1 (SAR), CHIRPS 
(precipitación) y herramientas como Google Earth Engine 
permitió caracterizar con precisión el impacto del huracán 
Patricia en Colima. Los resultados demostraron:

Detección precisa de inundaciones
Sentinel-1 identificó 142 km2 de áreas inundadas mediante 
radar SAR, evitando limitaciones por nubosidad. 

Correlación causa-efecto
Los datos CHIRPS revelaron un pico de 106 mm en un día 
(23-oct), explicando el origen hidrometeorológico de las 
inundaciones. Esta precipitación extrema, 212% superior al 
umbral de riesgo, coincidió espacial y temporalmente con 
las áreas afectadas mapeadas por SAR.

Ventajas metodológicas
La integración en Google Earth Engine agilizó el procesa-
miento de grandes volúmenes de datos, reduciendo tiem-
pos de análisis de días a horas.

Los modelos de aprendizaje automático (ej. umbralización 
en SAR) mostraron alta eficiencia para la segmentación 
automática de zonas inundadas.

Implicaciones y Recomendaciones
Gestión de riesgos: Estos resultados sustentan el desa-
rrollo de sistemas de alerta temprana basados en la com-
binación de SAR y datos de precipitación en tiempo cua-
si-real.

Futuras investigaciones: 
Se reconoce que este estudio no incluyó métricas de va-
lidación cuantitativa (precisión, exactitud, matriz de confu-
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sión) por ausencia de datasets clasificados de referencia 
en la región. Sin embargo, se propone incorporar estas 
métricas en investigaciones futuras mediante el uso de 
datos de campo o incorporando sensores IoT para vali-
dación in situ y modelos híbridos (SAR + LSTM) para pre-
dicciones más robustas.

Modelos como U-Net o Random Forest fueron analizados 
en la revisión literaria, pero no fueron implementados en 
este estudio. Se plantean como posibilidad para investi-
gaciones futuras.

En síntesis, este trabajo evidencia cómo la teledetección 
multidisciplinar —con tecnologías abiertas y gratuitas— 
puede transformar la respuesta ante desastres naturales, 
especialmente en regiones tropicales vulnerables como 
Colima. Los datos obtenidos no solo tienen valor académi-
co, sino también aplicaciones concretas en políticas públi-
cas de protección civil.
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