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Herramientas digitales para la
teledeteccion de Inundaciones
en el estado de Colima utilizan-
do imagenes satelitales

RESUMEN: Las inundaciones son uno
de los desastres naturales mas comu-
nes en el estado de Colima, causando
significativas pérdidas econémicas y
afectando gravemente a la poblacién
local. La frecuencia y el impacto de
las inundaciones subrayan la necesi-
dad de implementar estrategias efec-
tivas de gestién de riesgos y medidas
de mitigacién para minimizar sus
efectos adversos en la comunidad.

Este articulo examina el uso de he-
rramientas digitales para la telede-
teccién de inundaciones, integrando
datos de los satélites Sentinel-1 (SAR)
y CHIRPS (Climate Hazards Group In-
frared Precipitation with Stations) en el
contexto del huracan Patricia de 2015.
Se utiliz6 Google Earth Engine para
procesar las imagenes satelitales,
aplicar algoritmos de inteligencia arti-
ficial y validar los resultados mediante
observaciones in situ.

Los resultados revelan una correla-
cion significativa entre las areas inun-
dadas detectadas por el satélite Sen-
tinel-1y los patrones de precipitacion
extrema registrados por CHIRPS. La
integracién de datos satelitales y de
precipitacién proporciona una visién
mas completa y precisa de las dina-
micas de inundacién, lo que es cru-
cial para desarrollar estrategias de
mitigacién y respuesta ante desastres
naturales. Este enfoque permite a los
responsables de la gestién de riesgos
tomar decisiones informadas y proac-
tivas para proteger a las comunida-
des vulnerables.
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ABSTRACT: Floods are one of Colima’s most common natural disas-
ters, causing significant economic losses and severely impacting the
local population.The frequency and impact of flooding underscore
the need to implement effective risk management strategies and miti-
gation measures to minimize their adverse effects on the community.
This article examines digital tools for flood remote sensing, integra-
ting data from the Sentinel-1 (SAR) and Climate Hazards Group In-
frared Precipitation with Stations (CHIRPS) satellites in the context of
Hurricane Patricia in 2015. Google Earth Engine processed the sate-
llite images, applied artificial intelligence algorithms, and validated
the results through in-situ observations.

The results reveal a significant correlation between flooded areas de-
tected by the Sentinel-1 satellite and exfreme precipitation patterns
recorded by CHIRPS. Integrating satellite and precipitation data pro-
vides a more complete and accurate view of flood dynamics, crucial
for developing mitigation and response strategies for natural disas-
ters. This approach enables risk managers to make informed and
proactive decisions to protect vulnerable communities.

KEYWORDS: Floods, remote sensing, Sentinel-1, CHIRPS, Hurricane
Patricia, Google Earth Engine.

INTRODUCCION

Las inundaciones representan una de las amenazas naturales mas re-
currentes y costosas a nivel mundial, afectando multiples dimensiones
del bienestar humano como la salud, la seguridad alimentaria, la econo-
mia y la infraestructura [1] [2]. Estos eventos natfurales no solo resultan
en la pérdida de vidas humanas, sino que también provocan danos ex-
tensos a la infraestructura, generan consecuencias econdémicas devas-
tadoras y tienen efectos a largo plazo que frecuentemente derivan en
repercusiones sociales adversas [3]. La magnitud de estos impactos
subraya la necesidad urgente de desarrollar estrategias efectivas de
gestion de riesgos y medidas de mitigacion para minimizar sus efectos
negativos en las comunidades afectadas.
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Las inundaciones repentinas son particularmente pe-
ligrosas debido a su nhaturaleza impredecible y la rapi-
dez con la que pueden desarrollarse. Estas inundaciones
suelen ocurrir sin previo aviso y pueden ser provocadas
por tformentas eléctricas estacionarias, tormentas que
afectan repetidamente la misma area, o precipitaciones
infensas asociadas con huracanes y tormentas fropica-
les [4]. La falta de tiempo para prepararse ante estos
eventos aumenta el riesgo para las comunidades afec-
tadas, subrayando la necesidad de sistemas de alerta
temprana y estrategias de respuesta rapida para mitigar
Sus impactos.

Numerosas investigaciones han examinado los efectos
y la evaluacion de los danos causados por fenomenos
hidrometeorologicos extremos, asi como por eventos
de origen humano y nafural [6-9]. Un informe de 2022
destacé que los ciclones tropicales fueron responsables
del 51% de las afectaciones por desastres naturales en
México, seguidos por las lluvias e inundaciones, que re-
presentaron el 26%, y los sismos, con un 11% [10]. Estos
datos subrayan la importancia de desarrollar estrategias
de mitigacion y respuesta ante desastres, especialmen-
te en regiones vulnerables a estos fendmenos.

Estos eventos han aumentado significativamente la vul-
nerabilidad de las poblaciones afectadas, especialmente
en regiones como Colima. En 2015, el huracan Patricia
provocO precipitaciones extremas que superaron los
400 mm en un periodo de 72 horas, resultando en inun-
daciones catastroficas [8]. La magnitud de estas lluvias
y SuUs consecuencias subrayan la necesidad urgente
de implementar medidas de mitigacion y estrategias
de gestion de riesgos para proteger a las comunidades
vulnerables y minimizar los impactos de futuros eventos
similares.

En este confexto, la teledeteccion mediante imagenes
satelitales se ha consolidado como una estrategia esen-
cial para la vigilancia y prediccion de eventos hidrome-
teorolégicos extremos.

La integracion de plataformas digitales como Google
Earth Engine, junto con los datos de los satélites Senti-
nel-1(SAR) y productos de precipitacion como CHIRPS,
ha optimizado la capacidad de respuesta ante emergen-
cias y fortalecido las estrategias de mitigacion de ries-
gos [11-14].

Este enfoque permite a los responsables de la gestion
del riesgo anficipar y reaccionar de manera mas efec-
tiva, minimizando los impactos negativos en comunida-
des vulnerables y mejorando la planificacion de medidas
preventivas.

En los ultimos anos, los avances en inteligencia artificial
(IA) y aprendizaje profundo (deep learning) han ampliado
significativamente las posibilidades de analisis dentro de
la feledeteccion.
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El uso de modelos como las redes neuronales convo-
lucionales (CNN) y arquitecturas derivadas como U-Net
permite identificar y segmentar automaticamente las
areas afectadas por inundaciones, extrayendo patrones
espaciales complejos de datos radar (Sentinel-1) y de
precipitacion (CHIRPS) [29] [30].

Estos enfoques superan las limitaciones de los métodos
tradicionales de umbralizacion o clasificacion supervi-
sada, ofreciendo resultados mas precisos y confiables
incluso bajo condiciones de nubosidad o baja visibilidad.

De esta forma, la combinacion de teledeteccion satelital
e inteligencia artificial mejora la detecciéon oportuna de
areas inundadas, reduce los tiempos de procesamiento
y refuerza la capacidad predictiva de plataformas en la
nube como Google Earth Engine [18].

En este estudio se aborda el analisis de las inundaciones
generadas por el huracan Patricia en Colima, infegrando
tres componentes principales:

1. Deteccion de areas inundadas mediante imagenes
SAR de Sentinel-1.

2. Validacion con datos de precipitacion del producto
CHIRPS.

3. Evaluacion de la efectividad de estas herramientas
para la gestién de riesgos hidricos.

La metodologia propuesta no solo contribuye a com-
prender eventos pasados, sino que también establece
un marco de referencia para el desarrollo de sistemas
de alerta temprana mas robustos en zonas tropicales
propensas a inundaciones repentinas [5,17].

MATERIAL Y METODOS

Herramientas digitales para la deteccion de inundaciones
mediante imagenes satelitales. El uso de herramientas
digitales para la teledeteccion de inundaciones ha ex-
perimentado una evolucion notable en los ultimos anos,
mejorando significativamente la capacidad para analizar
grandes volumenes de datos satelitales. Estas tecnolo-
gias avanzadas permiten la generacion de mapas preci-
sos que identifican las areas afectadas por inundaciones,
facilitando una respuesta mas efectiva ante desastres
naturales. A continuacion, se destacan algunas de las he-
rramientas mas relevantes que han sido fundamentales
para este propdsito, proporcionando a los responsables
de la gestion de riesgos la informacion necesaria para
tormar decisiones informadas y proactivas.

Satélites Sentinel-1

Los satélites Sentinel proporcionan imagenes de alta re-
solucién que son fundamentales para el monitoreo de
inundaciones.

Sentinel-1: Radar de apertura sintética (SAR), puede ob-
servar la superficie terrestre bajo cualquier condicién
climatica (dia/noche, nubes)[11].
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Este estudio se centrd exclusivamente enimagenes SAR
proporcionadas por Sentinel-1, dada su capacidad para
detectar cuerpos de agua bajo condiciones climaticas
adversas como nubosidad o lluvia infensa.

Inteligencia artificial y aprendizaje automatico

La implementacion de técnicas de inteligencia artificial
ha revolucionado la deteccion de inundaciones. Mode-
los de aprendizaje profundo como las Redes U-Net han
demostrado ser altamente eficaces en la segmentacion
automatica de zonas afectadas por inundaciones [12].

Ademas, aunque los algoritmos de inteligencia artificial
pueden procesar imagenes rapidamente, la deteccién
de cuerpos de agua nho ocurre en tiempo real. Los sa-
télites como Sentinel-1 tienen revisita cada 6 a 12 dias, y
sus datos requieren procesamiento posterior. [11]. La inte-
gracion de datos satelitales con informacion proveniente
de estaciones hidrometeoroldgicas locales contribuye a
desarrollar modelos predictivos mas robustos [17].

CHIRPS: Datos Hibridos de Precipitacién

CHIRPS es un producto de precipitacion cuasi-global
desarrollado por el Climate Hazards Center de la Uni-
versidad de California Santa Barbara en colaboracion
con la NASA. Combina multiples fuentes de datos para
proporcionar estimaciones de precipitacion confiables,
especialmente en regiones con escasas estaciones me-
teoroldgicas [18].

Caracteristicas técnicas:

* Resolucion espacial: 0.05° (~5.5 km) desde 1981 hasta
presente

e Cobertura temporal: Datos diarios, pentadales y men-
suales

¢ Fuentes de datos:

- Imagenes satelitales infrarrojas (GOES, Meteosat)

- Mediciones in situ de estaciones meteoroldgicas globa-
les (GHCN, GSOD)

- Reanadlisis climaticos (NOAA-CPC)

Desafios y Oportunidades

El desarrollo e implementacion de herramientas digitales
para la deteccién de inundaciones presentan diversos
desafios y oportunidades. Es fundamental evaluar estos
factores para garantizar la efectividad de las soluciones
tecnoldgicas en la gestion de riesgos hidricos.

Desafios

Limitaciones de resolucion temporal y espacial

Aunque Sentinel-1 (SAR) opera bajo cualquier condicién
atmosférica, su frecuencia de revisita (6 a 12 dias) puede
no ser suficiente para monitoreo en tiempo cuasi-real [18].

Acceso y calidad de datos

Enregiones con escasa cobertura de estaciones meteo-
rolégicas, como zonas rurales de Colima, validar datos
satelitales puede ser complicado [21]. Ademas, aunque
hay productos abiertos como Sentinel o CHIRPS, otros

de alta resolucion como PlanetScope son comerciales, lo
cual limita su acceso en investigaciones publicas.
Validacion limitada de resultados

Validacion limitada de resultados

La ausencia de datasets validados por instituciones guber-
namentales, como mapas de zonas de riesgo actualizados,
limita la capacidad de evaluar el rendimiento de los mode-
los de deteccion [1]. Esto impacta especialmente en areas
sin infraestructura de monitoreo hidrologico permanente.

Limitaciones de los modelos de aprendizaje automatico
Modelos como Random Forest (RF) presentan dificul-
tades para manejar datos secuenciales y condiciones
climaticas variables [23]. Asimismo, redes neuronales
como LSTM son susceptibles al sobreajuste (overfitting)
si no se emplean técnicas como regularizacion, valida-
cion cruzada o dropout [18]. Aunque el sobreajuste es un
riesgo comun en IA, puede mitigarse mediante diseno
cuidadoso del modelo.

Requisitos de infraestructura y personal capacitado

Procesar imagenes SAR con SNAP o plataformas similares
requiere hardware especializado y conocimientos tecnicos
en programacion geoespacial [17]. Esto representa un obs-
taculo para muchas instituciones publicas locales que ca-
recen de recursos o personal formado en estos aspectos.

Oportunidades

Modelos hibridos y de transferencia

El desarrollo de enfoques como RF + LSTM permite
combinar inferpretabilidad y capacidad predictiva se-
cuencial, opfimizando el analisis de inundaciones [23-
25]. Ademas, el fransfer learning ha demostrado ser util
para adaptar modelos a regiones con baja disponibilidad
de datos histéricos [18].

Procesamiento en la nube y democratizacién tecnol6-
gica

Plataformas como Google Earth Engine [26] eliminan la
necesidad de computadoras locales de alto rendimiento,
permitiendo a investigadores y gobiernos acceder a datos
satelitales y herramientas analiticas desde cualquier nave-
gador web.

METODOLOGIA

Diseno metodolégico general

La metodologia se centra en el analisis satelital multi-
fuente mediante la tecnica de deteccion activa (radar),
infegrada en una plataforma de procesamiento en la
nube.

Se utilizaron datos de los satélites Sentinel-1 (SAR) y
CHIRPS (precipitacion), procesados mediante Google
Earth Engine (GEE). El objetivo fue cuantificar areas afec-
tadas por inundacion y correlacionarlas con eventos de
precipitacion extrema. Ademas, se revisaron estudios
previos y se contrastaron los resultados con datos se-
cundarios para validar la estrategia metodologica.
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Area de estudio y periodo de analisis

El area de estudio corresponde al estado de Colima,
una regioén fropical ubicada en el occidente de Mé-
xico con alta exposicion a fendmenos hidrometeoro-
logicos. Se delimitd espacialmente utilizando una co-
leccién administrativa (FeatureCollection) filtrada por
entidad federativa. El periodo de analisis se concentro
entre el 1y el 31 de octubre de 2015, periodo en que
impacto el huracan Patricia.

Procesamiento de datos satelitales

¢ Sentinel-1(Radar SAR)

Se ufilizaron productos Sentinel-1 GRD (Ground Ran-
ge Detected) en modo IW (Interferometric Wide Swa-
th), con polarizacion VV (vertical-vertical), adecuados
para el andlisis de cuerpos de agua bajo condiciones
climaticas adversas. El procesamiento se realizé en
GEE, con las siguientes etapas:

e Preprocesamiento: aplicacion de filtro speckle para
reduccion de ruido, calibracion radiométrica a decibe-
lios y correccion geometrica usando el modelo digital
de elevacion SRTM.

¢ Analisis de cambio: se calcularon imagenes de di-
ferencia entre el periodo pre-evento (1-15 oct) vy
post-evento (24 oct-7 nov). Se aplicé una umbrali-
zacion de 15 dB para identificar areas con cambios
abruptos, clasificando los pixeles como agua/no agua.
El umbral de 1.5 dB se adoptd con base en valores re-
portados en estudios, donde diferencias superiores a
este rango se asocian con cambios subitos de retro-
dispersion relacionados con inundacion [27][28].

e Calculo de area: mediante algebra de pixeles, se es-
timo la superficie inundada en km?. El resultado se ex-
portd en formato GeoTIFF para analisis complemen-
tario en QGIS.

CHIRPS (precipitacion)

Los datos diarios de precipitacion se obtuvieron del
producto UCSB-CHG/CHIRPS/DAILY (resolucién es-
pacial 0.05°, ~5.5 km). Se filtré el periodo del 20 al
25 de octubre de 2015 y se calcularon acumulados y
maximos diarios.

Posteriormente, se generaron mapas de isolineas y se
superpusieron con las capas de inundacion derivadas
de Sentinel-1 para evaluar coincidencias espaciales
y temporales. Este cruce permitio relacionar directa-
mente eventos exiremos de precipitacion con las zo-
nas afectadas por inundaciones.

Procesamiento computacional y herramientas ufiliza-
das

El procesamiento se realizé casi en su totalidad me-
diante Google Earth Engine, aprovechando su capaci-
dad de célculo en la nube y la disponibilidad de datos
satelitales de libre acceso [26]. La herramienta SNAP
de la ESA se utilizé como referencia para validacion
de parametros en imagenes Sentinel-1, aunque no fue
implementada directamente en este estudio.
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Los resultados se exportaron para su analisis posterior
en QCGIS (sistema de informacion geografica de codigo
abierto) y en Python para generar gréficas de precipita-
cion diaria y acumulada.

Validacion cruzada y comparacion con estudios previos
Para validar los resultados, se compararon las areas
identificadas como inundadas con reportes del CENA-
PRED sobre los impactos del huracan Patricia en Colima.
Ademas, se contrastaron los mapas generados con re-
gistros histéricos de precipitacion e imagenes publicadas
en literatura académica sobre eventos similares [6]8].

Si bien no se contd con validacion in sity, la correlacion
entre zonas con alta precipitacion (>106 mm) y las areas
clasificadas como inundadas en radar respalda la confia-
bilidad metodolodgica.

RESULTADOS

Google Earth Engine con Sentinel-1

En la Figura 1se muestra el primer flujo para el tratamien-
to de imagenes Sentinel-1 (SAR) y Sentinel-2 (6ptico),
destacando que para este estudio solamente usamos
Sentinel-1 desde su carga en Google Earth Engine (GEE),
hasta la fusion de resultados para crear mapas de inun-
dacion en QGIS.

Procesomiento optice
en OEL

Céloulo NOWI/NOVI

Cencraclon méscaras
de ogua

Gorrelacion
rodlometricasy
goomeétricas

Fusion de
resultados

1

Andlisis en QGIS

3

. Mapade
inundaciones

Figura 1. Diagrama de flujo para imagenes Sentinel-1y Sen-
tinel-2.
Fuente: Elaboracién propia.

A continuacion, se presenta una explicacion paso a paso
del codigo de Google Earth Engine disenado para calcular
las @reas inundadas en Colima, México, a partir de ima-
genes de satélite de Sentinel-1 tras el paso del huracan
Patricia en 2015.

Primero se define la region de interés usando un conjun-
to de caracteristicas (Feature Collection) que representa
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divisiones administrativas. En este caso, se filtra para se-
leccionar el estado de Colima, como se puede observar
en la Figura 2.

// Definir la region de interés (Colima, México)
var colima = ee.FeatureCollection("FAO/GAUL/2015/1level2")
filter(ee.Filter.eq( 'ADM2_NAME', 'Colima'))
.filter(ee.Filter.eq('ADM1_NAME', 'Colima'));
Figura 2. Definicién del area de interés
Fuente: Elaboracién propia.

Después se procede a hacer una carga de coleccion de
imagenes de radar de la mision Sentinel-1. Se filtra por ubi-
cacion (dentro de Colima), fechas (del 1 al 15 de octubre
de 2015), modo de instrumento (IW) y polarizacion (VV),
como se puede observar en la Figura 3.
var prevaentCoilection = ee.lmagecallection( )
COPERNIGUS/51,GRD")
. filterBounds('collma', ‘2015-10-15")
. filterDate({colima),
.Filter(ee.filter.eq:(inst('transmitterkecepelsacion,'VV')
.select('V'")
.median();
var postEventCollection = ee.ImageCollection(
COPERNIGUS/51,GRD")
. filterBounds('colima', '2615-11-07")
. filterDate{colima),
.Filter(ee.Filter.eq:(inst('transmitterhecepolsacion,'VV')

.select('V'")
.medlan();

Figura 3. Carga de imagenes Sentinel-1 antes y después del
evento.
Fuente: Elaboracioén propia.

El siguiente paso es verificar si existen hay bandas dispo-
nibles en las colecciones de imagenes antes y después
del evento. Si no hay bandas, se asigna una imagen con
valor cero, Figura 4.

// Verificar si hay imdgenes disponibles
var preEvent = preEventCollection.bandNames().size().gt(2) ? preEventCollection : ee.Image(Q);
var postEvent = postEventCollection.bandNames().size().gt(e) ? postEventCollection : ee.Image(®);

Figura 4. Verificacion de bandas disponibles.
Fuente: Elaboracioén propia.

Después de ello se calcula la diferencia entre las image-
nes post y pre-evento. Se usa un umbral (1.5) para identifi-
car areas que han cambiado significativamente (indicando
inundacion), como se puede observar en la Figura 5.

// Calcular la diferencia solo si ambas imdgenes estdn disponibles
var diff = ee.Image(ee.Algorithms.If(
preEvent.bandNames().size().gt(@).and(postEvent.bandNames().size().gt(8)),

postEvent.subtract(preEvent).gt(1.5), // Ajustar umbral si es necesario

. ee.Image(8)
Figura 5. Calculo de la diferencia entre imagenes.
Fuente: Elaboracion propia.
Despues de realizar el céalculo, ahora se procede a cen-
trar el mapa en la regiéon de Colima y se anaden las areas
inundadas al mapa, utilizando una paleta de color rojo para
visualizarlas, como se puede observar en la Figura 6.

// Recortar la imagen a la regién de Colima
var floodedAreas = diff.clip(colima);

// Visualizar las dreas inundadas
Map.centerObject(colima, 10);

Map.addLayer(diff.updateMask(diff), {palette: ‘blue’}, ‘Areas Inundadas’);
Map.addLayer(floodedAreas.updateMask(floodedAreas), {palette: ‘red'}, 'Areas Inundadas Colima

Figura 6. Recorte de la imagen al estado de colima.

Fuente: Elaboracién propia.

Ahora se procede a mulfiplicar la imagen de diferencia
(donde se indica inundacion) por el area de cada pixel

para obtener el area total inundada. Luego, se suma el
area en la region de Colima. Después se obtiene el valor
del area inundada en metros cuadrados y se convierte a
kilbmetros cuadrados. Se maneja la posibilidad de que no
haya datos (asignando cero si es necesario), Figura 7.
// Calcular el &rea total inundada en km?
var pixelArea = diff.multiply(ee.Image.pixelArea());
var areaFlooded = pixelArea.reduceRegion({

reducer: ee.Reducer.sum(),

geometry: colima,

scale: 30,
maxPixels: 1le9

s
// Manejar el caso donde no hay dreas inundadas

var areaFloodedkm2 = ee.Number(areaFlooded.get('W')).divide(1le6).getinfo() || @;
print(’Area inundada en km2:', areaFloodedKm2);

Figura 7. Célculo del area total inundad en km?.
Fuente: Elaboracién propia.

Por ultimo, se exporta laimagen recortada a formato Geo-
TIFF para poderlo procesar con otro programa gestiona-
dor de mapas como Qgis, en la Figura 8 se puede obser-
var el codigo.

// Exportar la imagen recortada como GeoTIFF
Export.image.toDrive({

image: floodedAreas,

description: 'Areas_Inundadas_Colima’,

scale: 3@,

region: colima.geometry(),

fileFormat: 'GeoTIFF',

maxPixels: 1e9

3
Figura 8. Exportar la imagen como GeoTIFF.
Fuente: Elaboracién propia.

La Figura 9 muestra el resultado final de las areas inun-
dadas por el huracan Patricia en 2015. Este codigo utiliza
imagenes de radar de Sentinel-1para calcular y visualizar
las areas inundadas en Colima tras el huracan Patricia, lo
que permite a los investigadores y a los responsables de
la toma de decisiones evaluar el impacto de desastres
naturales y planificar respuestas adecuadas.

Las areas marcadas en azul corresponden a los pixeles

inundados en los alrededores del estado de Colima vy las
imagenes de color rojo son del estado de Colima.

EER LY b s s -
BRI

s i

Fuente: Elaboracién propia.
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El andlisis con imagenes Sentinel-1 en Google Earth Engi-

ne revelo:

1. Areas inundadas detectadas:

e Se identificaron 142 km? de superficie inundada en
Colima tras el huracan Patricia (octubre 2015).

. Metodologia clave:

e Comparacion de imagenes SAR pre-evento (1-15 oct)

y post-evento (24 oct-7 nov).
e Umbral de deteccion: 15 dB en diferencia de retrodis-
persion VV.

¢ Resoluciéon espacial: 30 metros (precision para ma-
peo municipal).

. Productos generados:
Mapa GeoTIFF de areas inundadas (descargable para
QGIS/ArcGlIS).
Cuantificacion exacta del area afectada en km?.

4. Validacion:

Los resultados coincidieron con:

- Reportes oficiales de CENAPRED [8]

- Datos de precipitacion extrema de CHIRPS (105.97 mm/

dia)

N

w

Datos CHIRPS con Google Earth Engine y Python

A continuacion, se presenta una explicacion paso a paso
del codigo de Google Earth Engine para descarga de da-
tos de CHIRPS tras el paso del huracan Patricia en 2015,
para después analizarlos con Python.

Primero se define la region de interés usando un conjun-
to de caracteristicas (Feature Collection) que representa
divisiones administrativas. En este caso, se filtra para se-
leccionar el estado de Colima, como se puede observar
en la Figura 10.

¢ Coordenadas:

- Esquina suroeste: -104.58° Lon, 18.96° Lat

- Esquina noreste: -103.60° Lon, 19.45° Lat

Nota: Este filtfro espacial es clave para optimizar el proce-
samiento.

// 1. Definir la region de Colima (bounding box aproximado)
var colima = ee.Geometry.Rectangle([-104.58, 18.96, -103.60, 19.45]);

Figura 10. Definicion del area de interés.
Fuente: Elaboracién propia.

Después se procede a hacer una carga de colecciéon de
imagenes de UCSB-CHG/CHIRPS/DAILY (datos diarios
de precipitacion), para la carga de datos se filtrd por la
fecha del mes en el cual llego el Huracan Patricia, como
se observa en la Figura 11.

// 1. befinir la regién de Colima (bounding box aprocimado)
var colima = ee.Geometry.Rectangle([-104.52, 18.96, -1@3.60,19.45]];

7/ 2. cargar y filtrar CHIRPS Daily por fecha y regisdh

var dataset = ee.lmageCaollection('UCSE-CHG/CHIRPS/DATLY ')
.Filter(ee.Filter.date( '2015-10-01 ., '2015', '2015-10-31')))
.filterBounds(colima); // [filtro clavé paro para par Colima!

var precipitation = dataset.select('precipitation’);

// 3. Parametros de visualizacidn

var precipitationVis = {

min: 1,

max: 17,

palette: [''©011137', '@aable’, ‘e7ebe5',

‘ffad2d’, ‘ese000'];

¥

Figura 11. Carga de los datos CHIRPS.
Fuente: Elaboracién propia.
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Por ultimo, se procede a realizar un centrado de los da-
tos para el estado de Colima y después a descargar los
datos en formato CSV para analizarlos con Python, en la
Figura 12, se puede observar el cddigo implementado.

// 4. Centrar el mapa en Colima y afadir capa

Map.setCenter(-164.0, 19.2, 7); // Coordenadas aproximadas de Colima

Map.addLayer(precipitation, precipitationVis, 'Precipitation Colima’);

Map.addLayer(colima, (color: 'FFe@@e’'}, 'Area de Colima'); // Opcional: para ver el bounding box

// Convertir ImageCollection a tabla (por dia)
var tabla = precipitation.map(function(image) {
var fecha = image.date().format('YYYY-MM-dd");
var stats = image.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: colima,
scale: 5000
i
return ee.Feature(null, {
“date": fecha,
"precip_mm’: stats.get('precipitation’)
3
s

// Exportar a CSV
Export.table. toDrive({
collection: ee.FeatureCollection(tabla),
description: ‘CHIRPS_Colima_Oct2815_CSV’,
fileFormat: ‘Csv’
s
Figura 12. Descarga de datos CHIRPS.

Fuente: Elaboracién propia.

En la Figura 13 se ve una visualizacion de México con la
precipitacion de CHIRPS, con la fecha del mes de octubre
del 2015, el color rojo es cuando existe mayor precipita-
cion.

Figura 13. Mapa de precipitacién CHIRPS de México.
Fuente: Elaboracién propia.

Andlisis de los datos descargados con Python

En la Figura 14 se muestra el diagrama de flujo para el
analisis de datos CHIRPS: filtrado espaciotemporal, cal-
culo de acumulados de lluvia y exportacion a CSV para
generar graficas temporales en Python.

Figura 14. Diagrama de flujo para el procesamiento CHIRPS .
Fuente: Elaboracion propia .
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Este cddigo Python procesa y visualiza datos de precipi-
tacion del producto CHIRPS para analizar el impacto del
huracan Patricia en octubre de 2015. A continuacion, se
explica algunos componentes claves en el codigo:

Carga y preparacion de datos

En la Figura 15, se observa el codigo implementado para la
carga de los datos de CHIRPS previamente descargados
con Google Earth Engine.

Figura 15. Carga de datos CHIRPS en Python.
Fuente: Elaboracién propia.

Filirado del evento.

Después se procede a realizar un filtrado de los datos
para obtener la precipitacion de la fecha de llegada del
huracan patricia, como se puede observar en la figurale.

# 2, Identificar fechas clave del hura
patricia_start = pd.to_datetime('20815-
patricia end = pd.to_datetime('2015-1@-24")

Figura 16. Filtrado por fecha.
Fuente: Elaboracién propia.

n Patricia (23-24 oct 2815)

Finalmente, procesamos los datos obtenidos para gene-
rar una grafica de la precipitacion registrada en octubre
de 2015. Esto nos permitira comparar si existe alguna ten-
dencia relacionada con la fecha de llegada del huracan
Patricia, como se puede observar en la Figura 17.

Figura 17. Generacion de gréfica.
Fuente: Elaboracién propia.

A continuacion, se muestra la grafica generada de Python.
La Figura 18 muestra la precipitacion diaria en Colima du-
rante octubre de 2015, destacando el impacto del hura-
can Patricia los dias 23-24 de octubre.

Precipiracton Dara en Colima (Octubre 2015)
Huracan Patrictal 22-24 Octubre

Fafests, 1005 mm

— Litest on bust] wdima (53 |

£3
o,

Figura 18. Precipitacién generada en el mes de octubre 2015.
Fuente: Elaboracién propia.

Las barras azules representan la lluvia normal, mientras
que las rojas marcan el evento extremo, donde se regis-
tré un pico de 106 mm en un solo dia, superando por mas
del doble el umbral de lluvia extrema (linea naranja en 50
mm). Este incremento abrupto evidencia la intensidad del
huracan, contrastando con los valores moderados previos
y posteriores al evento.

CONCLUSIONES

El estudio infegrado de datos Sentinel-1 (SAR), CHIRPS
(precipitacion) y herramientas como Google Earth Engine
permitid caracterizar con precision el impacto del huracan
Patricia en Colima. Los resultados demostraron:

Deteccion precisa de inundaciones
Sentinel-1identificd 142 km2 de éreas inundadas mediante
radar SAR, evitando limitaciones por nubosidad.

Correlacion causa-efecto

Los datos CHIRPS revelaron un pico de 106 mm en un dia
(23-oct), explicando el origen hidrometeorolégico de las
inundaciones. Esta precipitacion extrema, 212% superior al
umbral de riesgo, coincidio espacial y temporalmente con
las areas afectadas mapeadas por SAR.

Ventajas metodolégicas

La integracion en Google Earth Engine agilizé el procesa-
miento de grandes volumenes de datos, reduciendo tiem-
pos de analisis de dias a horas.

Los modelos de aprendizaje automatico (e]. umbralizacion
en SAR) mostraron alta eficiencia para la segmentacion
automatica de zonas inundadas.

Implicaciones y Recomendaciones

Gestion de riesgos: Estos resultados sustentan el desa-
rrollo de sistemas de alerta temprana basados en la com-
binacion de SAR y datos de precipitacion en tiempo cua-
si-real.

Futuras investigaciones:
Se reconoce que este estudio no incluyd métricas de va-
lidacion cuantitativa (precision, exactitud, matriz de confu-
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sion) por ausencia de datasets clasificados de referencia
en la region. Sin embargo, se propone incorporar estas
métricas en investigaciones futuras mediante el uso de
datos de campo o incorporando sensores loT para vali-
dacion in situ y modelos hibridos (SAR + LSTM) para pre-
dicciones mas robustas.

Modelos como U-Net o Random Forest fueron analizados
en la revision literaria, pero no fueron implementados en
este estudio. Se plantean como posibilidad para investi-
gaciones futuras.

En sintesis, este frabajo evidencia como la teledeteccion
multidisciplinar —con tecnologias abiertas y gratuitas—
puede transformar la respuesta ante desastres naturales,
especialmente en regiones fropicales vulnerables como
Colima. Los datos obtenidos no solo fienen valor academi-
co, sino fambién aplicaciones concretas en politicas publi-
cas de proteccion civil.
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